
Perturbation solution for small amplitude solitary waves in two-phase fluid flow of compacting

media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 6309

(http://iopscience.iop.org/0305-4470/32/35/309)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 6309–6320. Printed in the UK PII: S0305-4470(99)04156-6

Perturbation solution for small amplitude solitary waves in
two-phase fluid flow of compacting media

M Nakayama and D P Mason†
Centre for Differential Equations, Continuum Mechanics and Applications and Department of
Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, 2050
Wits, Johannesburg, South Africa

E-mail: DPMASON@cam.wits.ac.za

Received 10 May 1999

Abstract. A perturbation solution for small-amplitude solitary waves is derived for the third-
order nonlinear partial differential equation due to Scott and Stevenson which describes the one-
dimensional migration of melt through the Earth’s mantle. The straightforward perturbation
expansion breaks down and a coordinate stretching transformation is performed to render the
perturbation expansion uniformly valid. The lowest-order perturbation solution has the same form
as the single-soliton solution of the Korteweg–de Vries equation. The perturbation solution is
derived to second order in implicit form. It is found to be extremely accurate when compared
with known exact solutions for specific values of the exponentsn andm. The zero- and first-order
perturbation solutions are found to be accurate whenn = m. The properties of small-amplitude
solitary waves are investigated using the perturbation solution.

1. Introduction

The one-dimensional migration of melt upwards through the mantle of the Earth under the
action of gravity can be described by the third-order nonlinear partial differential equation [1]

∂φ

∂t
+
∂

∂z

[
φn
(

1− ∂

∂z

(
1

φm

∂φ

∂t

))]
= 0 (1.1)

for the voidage, or volume fraction of melt,φ(z, t). Approximate large amplitude and exact
rarefactive solitary wave solutions of equation (1.1) have been derived by several authors
[1–5]. In a rarefactive solitary wave a small region of locally high voidage ascends through a
background region of lower uniform voidage. In this paper we present a perturbation solution
of equation (1.1) for small-amplitude rarefactive solitary waves.

The derivation of equation (1.1) has been performed by several authors, for bothm 6= 0
[1, 5, 6] and form = 0 [2, 3, 7]. Interest in equation (1.1) has continued [8–12] and recently
Harris [13] performed a systematic search for conservation laws associated with the equation.
The constant parametersn andm are the exponents in power laws relating the permeability of
the medium,K, and the bulk and shear viscosities of the solid matrix,ξ andη, to the voidage:

K = K0φ
n ξ = ξ0

φm
η = η0

φm
. (1.2)
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It has been suggested that the values ofn andm in the ranges 26 n 6 5 and 06 m 6 1
are physically relevant to melt migration in the Earth’s mantle [1, 3]. The voidageφ(z, t) in
(1.1) is normalized by division using the constant background voidageφ0 and in the derivation
of (1.1) it is assumed thatφ0 � 1. The dimensionless variable,z, is the vertical coordinate
measured ‘positive upwards’ and scaled by division using the compaction lengthδc:

δc =
(
K0φ

n−m
0 (ξ0 + 4

3η0)

µ

)1/2

(1.3)

whereµ is the coefficient of shear viscosity of the melt. The dimensionless variablet is the
time scaled by division using the characteristic timet0:

t0 =
(
µ(ξ0 + 4

3η0)

K0φ
n+m−2
0

)1/2
1

g1ρ
(1.4)

whereg is the acceleration due to gravity and1ρ = ρs − ρm > 0 is the difference between
the density of the solid matrix,ρs , and the density of the melt,ρm.

An outline of the paper is as follows. In section 2, general results required in the remainder
of the paper are presented. In section 3, the perturbation solution for small-amplitude solitary
waves is derived to second order in the perturbation parameterε, whereε is the amplitude of the
solitary wave. A stretching transformation is employed to render the perturbation expansion
uniformly valid. In section 4, the accuracy of the perturbation solution for the speed of the
solitary wave is examined and the properties of the speed of small-amplitude solitary waves are
investigated. In section 5 the accuracy of the perturbation solution for the shape of the solitary
wave is examined by comparing it with known exact solutions for specific values ofn andm
and the properties of small-amplitude solitary waves are investigated using the perturbation
solution. Finally, the conclusions are summarized in section 6.

2. General results

In this section we review some general results which are required in section 3 [1, 3, 5].
We consider one-dimensional solitary wave solutions of (1.1) of the form

φ(z, t) = ψ(ζ ) ζ = z− ct (2.1)

where the constantc is the dimensionless ascent speed of the solitary wave. Equation (1.1)
becomes

c
dψ

dζ
− d

dζ

[
ψn

(
1 + c

d

dζ

(
1

ψm

dψ

dζ

))]
= 0. (2.2)

If we integrate (2.2) once with respect toζ and then once with respect toψ with the aid of the
identity [1]

d

dζ

(
1

ψm

dψ

dζ

)
= 1

2
ψm d

dψ

(
1

ψ2m

(
dψ

dζ

)2
)

(2.3)

we obtain

c

(
dψ

dζ

)2

= f (ψ) (2.4)

where

f (ψ) = 2ψ2m

(
α

∫ ψ dx

xn+m
+ c

∫ ψ dx

xn+m−1
−
∫ ψ dx

xm
+ β

)
(2.5)
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andα andβ are constants. The background state isψ = 1. Let the maximum value of the
voidage beψ = 9 > 1 so that the amplitude of the solitary wave is9−1. The three constants,
α, β andc in (2.5) are obtained by imposing the following three boundary conditions for a
rarefactive solitary wave:

ψ = 1
dψ

dζ
= 0

d2ψ

dζ 2
= 0 (2.6)

ψ = 9 > 1
dψ

dζ
= 0. (2.7)

By using (2.3) withm = 0 and (2.4), the three boundary conditions given by (2.6) and (2.7)
can be written in terms off (ψ) as

f (1) = 0
df

dψ
(1) = 0 f (9) = 0 9 > 1. (2.8)

It can be shown [5] that if the three boundary conditions in (2.8) are imposed on (2.5) then
(

dψ
dζ )

2 < 0 for 1 < ψ < 9 when 0< n 6 1 and thatc = 0 and dψ
dζ is undetermined

whenn = 0. Therefore, rarefactive solitary wave solutions satisfying (2.8) do not exist when
0 6 n 6 1. It can be further shown that ifn > 1 then( dψ

dζ )
2 > 0 for 1< ψ < 9 and hence

rarefactive solitary wave solutions exist. In the following we therefore only consider the range
n > 1.

There are four cases: a general case and three special cases. For the general case in which
n +m 6= 1, n +m 6= 2 andm 6= 1, it can be verified that [5]

c = (n +m− 2)[n9n+m−1− (n +m− 1)9n +m− 1]

(m− 1)[9n+m−1− (n +m− 1)9 + n +m− 2]
(2.9)(

dψ

dζ

)2

= 2

(n +m− 2)[n9n+m−1− (n +m− 1)9n +m− 1]

[ + ((n− 1)9n+m−1− (n +m− 2)9n + (m− 1)9)ψm−n+1

−(n9n+m−1− (n +m− 1)9n +m− 1)ψm−n+2

+(9n+m−1− (n +m− 1)9 + n +m− 2)ψm+1− (9n − n9 + n− 1)ψ2m].

(2.10)

The three special cases aren +m = 1, n +m = 2 andm = 1. The perturbation solution
which we derive for the general case remains valid when we putn+m = 1,n+m = 2 orm = 1
and it can be verified by direct calculation that the perturbation solutions for the three special
cases are exactly the same as are obtained by puttingn +m = 1, n +m = 2 orm = 1 in the
perturbation solution for the general case. The singular factorsn+m−1,n+m−2 andm−1
which occur at intermediate stages in the analysis in the general case cancel before the end of
the calculation and do not occur in the final perturbation solution. Logarithms which occur at
intermediate stages in the analysis of the special cases do not occur in the final perturbation
solutions for the special cases. Therefore, we do not consider the special cases here. The
analysis is the same as the general case and the perturbation solution for the general case is
valid for all values ofn andm.

3. Perturbation solution

We consider small-amplitude solitary waves. Letε denote the amplitude of the solitary wave
so that9 = 1 + ε where 0< ε < 1. We takeε to be the perturbation parameter.
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The expansion of (2.9) in powers ofε to third order inε is

c = n[1 + 1
3(n− 1)ε + 1

36(n− 1)(2n−m− 6)ε2

+ 1
540(n− 1)(2n2 − 8nm−m2 − 24n + 21m + 54)ε3 + O(ε4)] (3.1)

asε→ 0. The factors(n +m− 2) and(m− 1) which occur in (2.9) do not occur in (3.1).
Next consider the perturbation solution for the solitary waveψ . Many of the exact solutions

which have been derived are expressed in the implicit form,ζ = ζ(ψ), [2, 3, 5]. We therefore
look for a perturbation solution in implicit form and treatψ as the independent variable andζ
as the dependent variable. Now, a straightforward perturbation expansion of the form

ζ(ψ; ε) = 1

εα
(ζ0(ψ) + εζ1(ψ) + ε2ζ2(ψ) + O(ε3)) (3.2)

asε→ 0, whereψ is kept fixed in the limiting process and the exponentα is to be determined
during the analysis, breaks down. The reason why (3.2) breaks down is due to the factor
(9 − ψ) in f (ψ) which occurs because of the boundary conditionf (9) = 0 given by (2.8).
Then dψ

dζ has the factor(9 −ψ)1/2 which may be written as(1−ψ + ε)1/2. The lowest-order

term in the straightforward perturbation expansion ofdψ
dζ , which is obtained by puttingε = 0,

therefore has the factor(1− ψ)1/2 which is imaginary becauseψ > 1. The non-existence
of a straightforward perturbation solution of the form (3.2) is due to the sharp change in the
dependent variableζ , from eitherζ = +∞ or−∞ to ζ = 0 in the domain 16 ψ 6 1 + ε of
the independent variableψ . The sharp-change region isψ − 1 = O(ε). A sharp change is
characterized by a magnified scale. We therfore magnify the sharp change by the stretching
transformation

u = ψ − 1

ε
. (3.3)

The domain of the variableu is 06 u 6 1. We look for a perturbation solution of the form

ζ(u; ε) = 1

εα
(ζ0(u) + εζ1(u) + ε2ζ2(u) + O(ε3)) (3.4)

asε→ 0, whereu is kept fixed in the limiting process and the exponentα is to be determined
during the analyis by balancing the dominant terms. The problem is a singular perturbation
problem.

We expand (2.10) to third order inε by substitutingψ = 1+εu and9 = 1+ε. This gives(
du

dζ

)2

= ε(n− 1)u2(1− u)
3

[
1− ε

12
{3(2n− 5m + 2)u + 2n +m + 2}

+
ε2

189
{9(3n2 − 12nm + 16m2 + 9n− 26m + 6)u2

+3(4n2 − 11nm− 7m2 + 12n− 8m + 8)u

+2n2 + 2nm−m2 + 16n + 11m + 14} + O(ε3)

]
(3.5)

asε→ 0. Intermediate results in the derivation of (3.5) are given in appendix A. We observe
that n − 1 is a factor on the right-hand side of equation (3.5). This clearly illustrates the
general result that for solitary wave solutions to exist which satisfy the boundary conditions
(2.6) and (2.7), or equivalently (2.8), it is necessary thatn > 1. We also see that the factors
n+m−1,n+m−2 andm−1 which occur at intermediate stages in the analysis do not occur
in expansion (3.5).
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It follows directly from (3.5) and expansion (3.4) forζ(u; ε) that
1

εα
(dζ0 + ε dζ1 + ε2 dζ2 + O(ε3))

= ± 1

ε1/2

(
3

n− 1

)1/2[ 1

u(1− u)1/2 + ε

(
A(n,m)

2(1− u)1/2 +
B(n,m)

u(1− u)1/2
)

+ε2

(
3

2
D(n,m)(1− u)1/2 +

E(n,m)

2(1− u)1/2 +
F(n,m)

u(1− u)1/2
)

+ O(ε3)

]
du (3.6)

where

A(n,m) = 1
4(2n− 5m + 2) (3.7)

B(n,m) = 1
24(2n +m + 2) (3.8)

D(n,m) = 1
960(−12n2 + 108nm− 119m2 + 24n− 116m + 36) (3.9)

E(n,m) = 1
960(92n2 − 388nm + 319m2 − 24n + 236m− 116) (3.10)

F(n,m) = 1
5760(28n2 + 28nm + 31m2 − 136n− 116m− 164). (3.11)

By balancing the dominant terms on the right- and left-hand sides of (3.6) it follows thatα = 1
2.

Equation (3.6) becomes

dζ0 + εdζ1 + ε2dζ2 + O(ε3) = ±
(

3

n− 1

)1/2[ 1

u(1− u)1/2 + ε

(
A(n,m)

2(1− u)1/2 +
B(n,m)

u(1− u)1/2
)

+ε2

(
3

2
D(n,m)(1− u)1/2 +

E(n,m)

2(1− u)1/2 +
F(n,m)

u(1− u)1/2
)

+ O(ε3)

]
du.

(3.12)

We chooseζ = 0 atu = 1 which corresponds toψ = 9. Thus

u = 1 ζn(1) = 0 n > 0. (3.13)

Equation (3.12) is solved, subject to the initial conditions (3.13), by equating the coefficients
of like powers ofε.

3.1. Zero order inε

The zero order inε terms in (3.12) are

dζ0 = ±
(

3

n− 1

)1/2 du

u(1− u)1/2 . (3.14)

We obtain the zero-order solution in both explicit and implicit form.
First, consider the solution in explicit form. If we letu = sech2 θ and from (3.13) impose

the initial conditionζ0 = 0 atθ = 0, then we obtain

u = sech2
(

1

2

(
n− 1

3

)1/2

ζ0

)
. (3.15)

Sinceψ = 1 + εu and, to lowest order inε, ζ0 = ε1/2ζ , whereε = 9 − 1, equation (3.15)
becomes

ψ = 1 + (9 − 1) sech2
[

1

2

(
(n− 1)(9 − 1)

3

)1/2

ζ

]
. (3.16)

The approximate solution (3.16) has the same sech2 form as the single-soliton solution of the
Korteweg–de Vries equation [14].
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Next consider the solution in implicit form. By lettingu = 1− w2 it can be verified that∫
du

u(1− u)1/2 = − ln

(
1 + (1− u)1/2
1− (1− u)1/2

)
+ constant. (3.17)

Thus using (3.17) and the initial condition,ζ0 = 0 atu = 1, it follows from (3.14) that

ζ0(u) = ∓
(

3

n− 1

)1/2

ln

(
1 + (1 +u)1/2

1− (1− u)1/2
)
. (3.18)

Sinceζ0 = ε1/2ζ andψ = 1 + εu, whereε = 9 − 1, we obtain from (3.18) the implicit
solution to lowest order inε:

ζ = ∓
(

3

(n− 1)(9 − 1)

)1/2

ln

(
(9 − 1)1/2 + (ψ − 1)1/2

(9 − 1)1/2 − (ψ − 1)1/2

)
. (3.19)

3.2. First order inε

By equating the coefficients ofε in (3.12) we obtain

dζ1 = ±
(

3

n− 1

)1/2 [
A(n,m)

2(1− u)1/2 +
B(n,m)

u(1− u)1/2
]

du. (3.20)

We integrate (3.20) with the aid of (3.17) and impose the initial condition (3.13) thatζ1 = 0
atu = 1. This gives

ζ1(u) = ∓
(

3

n− 1

)1/2 [
A(n,m)(1− u)1/2 +B(n,m) ln

(
1 + (1− u)1/2
1− (1− u)1/2

)]
. (3.21)

3.3. Second order inε

By equating the coefficients ofε2 in (3.12) we have

dζ2 = ±
(

3

n− 1

)1/2 [3

2
D(n,m)(1− u)1/2 +

E(n,m)

2(1− u)1/2 +
F(n,m)

u(1− u)1/2
]

du. (3.22)

In order to integrate (3.22), equation (3.17) is used again. By imposing the initial condition
from (3.13) thatζ2 = 0 atu = 1, we obtain

ζ2(u) = ∓
(

3

n− 1

)1/2

×
[
D(n,m)(1− u)3/2 +E(n,m)(1− u)1/2 + F(n,m) ln

(
1 + (1− u)1/2
1− (1− u)1/2

)]
.

(3.23)

3.4. Solution correct to orderε2

The perturbation solution correct to second order inε is obtained by substituting (3.18), (3.21)
and (3.23) into expansion (3.4) withα = 1

2:

ζ = ∓
(

3

(n− 1)ε

)1/2[
ln

(
1 + (1− u)1/2
1− (1− u)1/2

)
+ε

(
A(n,m)(1− u)1/2 +B(n,m) ln

(
1 + (1− u)1/2
1− (1− u)1/2

))
+ε2

(
D(n,m)(1− u)3/2 +E(n,m)(1− u)1/2

+F(n,m) ln

(
1 + (1− u)1/2
1− (1− u)1/2

))
+ O(ε3)

]
(3.24)
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Figure 1. Comparison of the perturbation solution (3.1) and the exact solution (2.9) forc with
ε = 0.8 and (a) n = 3, 06 m 6 3 (b) m = 1

2 , 1 < n 6 5. Perturbation solution to first order
(- - - -), second order (– – –), third order (— — —) and exact solution (——).

asε→ 0, where

ψ = 1 + εu. (3.25)

We can substituteu = 1
ε
(ψ − 1) into (3.24) to obtain an implicit solution of the form

ζ = ζ(ψ). Alternatively, we can leave the solution in the parametric form, (3.24) and (3.25),
with u as a parameter, where 06 u 6 1. The parametric form is particularly useful for plotting
graphs of the solitary wave.

The perturbation solution for the special casesn + m = 1, n + m = 2 andm = 1 can
be calculated, as outlined above, for the general case. It can be verified that the perturbation
solutions derived for the special cases are exactly the same as are obtained by puttingm = 1−n,
m = 2−n andm = 1 in the general solution (3.24). The special casen+m = 1 is not physical
if m > 0 because thenn 6 1.

The perturbation solution, (3.24) and (3.25), is discussed in section 5.

4. Perturbation solution for the speed of the solitary wave

The accuracy of the perturbation solution forc asm varies for fixedn is examined in figure 1(a)
where the perturbation solution (3.1) and the exact solution (2.9) forn = 3 and 06 m 6 3
are compared whenε = 0.8. The perturbation solution becomes less accurate asm increases
and the perturbation solution to O(ε2) is slightly more accurate than the perturbation solution
to O(ε3). The accuracy of the perturbation solution forc asn varies for fixedm is investigated
in figure 1(b) where the perturbation and exact solutions, (3.1) and (2.9), are compared for
m = 1

2 and 16 n 6 5 whenε = 0.8. The perturbation solution becomes less accurate asn

increases but the perturbation solution to O(ε3) is more accurate than the perturbation solution
to O(ε2). As more terms are included in the perturbation solution it alternately underestimates
and overestimates the exact solution.

The dependence ofc on n has been fully investigated using the exact theory [5] and it
can be shown thatc is an increasing function ofn for n > 1, as illustrated in figure 1(b). The
dependence ofc onm can be investigated using the perturbation solution (3.1). From (3.1),

∂c

∂m
= − 1

540
n(n− 1)[15 + (8n + 2m− 21)ε]ε2 + O(ε4) (4.1)

asε → 0. Suppose thatm > 0, which is physically relevant to melt migration in the Earth’s
mantle and that 06 ε < 1 which is necessary for the perturbation solution to apply. Also, for
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Figure 2. Comparison of the perturbation solution, (3.24) and (3.25), forε = 0.8 with the exact
solutions: (a) n = 3,m = 0; (b) n = 3,m = 2; (c) n = m = 2; (d) n = m = 3

2 . Perturbation
solution to zero order (— — —), first order (– – –), second order (- - - -) and exact solution (——).
The graphs of the second-order perturbation solution and the exact solutions overlap.

the existence of a solution, it is necessary thatn > 1. Then, if terms of O(ε4) are neglected,

∂c

∂m
< − 1

270
n(n− 1)(m + 1)ε3 < 0. (4.2)

Thus, for small-amplitude solitary waves correct to O(ε3), c is a decreasing function of the
exponentm for m > 0, as illustrated in figure 1(a).

The speed,c, is dimensionless and is scaled with respect to the velocity of the background
melt which from (1.3) and (1.4) is given by

δc

t0
=
(
K0g1ρ

µ

)
φn−1

0 . (4.3)

The actual speed,v, of the solitary wave is

v =
(
K0g1ρ

µ

)
φn−1

0 c (4.4)

which has a different dependence onn from c but the same dependence onm. Thus for small-
amplitude solitary waves correct to O(ε3), v is a decreasing function of the exponentm for
m > 0.
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5. Perturbation solution for the solitary wave

The exact solutions forn = 3 andm = 0, n = 3 andm = 2, n = m = 2 andn = m = 3
2 are

listed in appendix B. In figure 2 the perturbation solution in parametric form, given by (3.24)
and (3.25), is compared with the exact solutions whenε = 0.8. For all cases the graph of the
perturbation solution to second order inε overlaps the exact solution which indicates that the
perturbation solution to second order inε is a good approximation for small-amplitude solitary
waves. We also see that whenm = n the perturbation solution is particularly accurate and
even the zero-order solution (3.16) is close to the exact solution.

In order to use the perturbation solution to investigate how the properties of small amplitude
solitary waves depend onn andm, we must express the solution in terms of characteristic
quantities that are independent ofn andm. Thus, instead of scalingζ by δc defined by (1.3),
we use the characteristic lengthδ′c defined by

δ′c =
(
K0(ξ0 + 4

3η0)

µ

)1/2

. (5.1)

The perturbation solution depends explicitly on the background voidageφ0 whereφ0� 1.
First, consider the lowest-order perturbation solution given by (3.16). Whenζ is scaled

by δ′c, (3.16) may be written as

ψ = 1 + (9 − 1) sech2
(
z− ct
L

)
(5.2)

whereL, which is a measure of the width of the solitary wave to this approximation, is

L = 2

(
3φn−m0

(n− 1)(9 − 1)

)1/2

. (5.3)

Equation (5.2) has the same form as the single-soliton solution of the Korteweg–de Vries
equation [14]. The width,L, is inversely proportional to the square root of the amplitude as
with the solution of the Korteweg–de Vries equation. Larger-amplitude solitary waves are
therefore narrower in width. This compares with the result for large-amplitude solitary waves
for which it can be shown, using the large-amplitude approximation, that larger-amplitude
solitary waves are narrower in width ifm > 1 but broader in width if 06 m 6 1 [5]. It
follows directly from (5.3) that

∂L

∂n
= 1

2

(
ln φ0 − 1

n− 1

)
L < 0 (5.4)

∂L

∂m
= −1

2
(ln φ0)L > 0. (5.5)

Thus, to the lowest-order approximation,L decreases asn increases andL increases asm
increases. If terms to first order inε are retained then from (3.1),

c = n(1 + 1
3(n− 1)(9 − 1)). (5.6)

The speedc increases linearly with the amplitude,9 − 1, as for the single-soliton solution
of the Korteweg–de Vries equation [14]. Thus, in the small-amplitude approximation, larger-
amplitude solitary waves travel faster. The fact that larger-amplitude solitary waves travel
faster may be proved without approximation for waves of any amplitude [5].

Now consider the contributions of higher-order terms in the perturbation solution. Let
W denote the width of the solitary wave at half its height. ThenW is twice the value ofζ
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Figure 3. The width,W , of the solitary wave at half its height, given by (5.7), plotted againstn

andm for φ0 = 0.01 andε = 0.8. The characteristic length isδ′c defined by (5.1).

evaluated atu = 1
2. If we scaleζ by δ′c instead of byδc then from (3.24),

W = 2

(
3φn−m0

(n− 1)ε

)1/2[
ln

(√
2 + 1√
2− 1

)
+ ε

(
1√
2
A(n,m) +B(n,m) ln

(√
2 + 1√
2− 1

))
+ε2

(
1

2
√

2
D(n,m) +

1√
2
E(n,m) + F(n,m) ln

(√
2 + 1√
2− 1

))
+ O(ε3)

]
(5.7)

asε→ 0. In figure 3,W is plotted againstn andm for φ0 = 0.01 andε = 0.8. We see from
figure 3 that whenφ0 = 0.01,W is an increasing function ofm and a decreasing function ofn
which is consistent with the conclusions drawn from the lowest-order perturbation solution. A
similar dependence of the width onn andmwhenφ0 = 0.01 was found for the large-amplitude
approximation [5].

6. Conclusions

The exact solutions of equation (1.1) which have been derived so far apply for specific values
of n andm. The perturbation solution, (3.24) and (3.25), applies for all values ofn(n > 1)
andm. It can therefore be used to investigate how the properties of small-amplitude solitary
waves depend onn andm. Equation (3.24) clearly shows thatn > 1 is a necessary condition
for the existence of solitary wave solutions satisfying the boundary conditions (2.6) and (2.7)
[5]. The parametric form, (3.24) and (3.25), also provides a convenient way to calculate the
width and to plot graphs of the solitary wave.

The comparison of the perturbation solution with the exact solutions showed that the
perturbation solution to orderε2 is a very good approximate small-amplitude solitary wave
solution. In all cases considered the graphs of the perturbation solution to second order inε

and the exact solutions overlapped. The accuracy of the perturbation solutions to zero order
and first order inε improved asm andn became equal and were quite accurate for the two
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cases ofm = n considered. The values ofn andm in the exact solutions used to test the
perturbation solution were in the ranges3

2 6 n 6 3 and 06 m 6 2. The value,ε = 0.8,
which was used is comparatively large for a perturbation parameter and provided a good test.

The lowest-order perturbation solution has the same sech2 form and similar properties
to the single-soliton solution of the Korteweg–de Vries equation. To this approximation the
width of the solitary wave is inversely proportional to the square root of the amplitude and the
speed of the solitary wave increases linearly with the amplitude.
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Appendix A. Expansions in powers ofε

Consider the general case in whichn + m 6= 1, n + m 6= 2 andm 6= 1. We present some
perturbation expansions to fifth order inε used in the derivation of equation (3.5). Define

S(n,m; ε) = 1
3ε − 1

36(2n +m + 2)ε2 + 1
540(2n

2 + 2nm−m2 + 16n + 11m + 14)ε3

+ 1
6480(2n

3 + 3n2m + 3nm2 +m3− 24n2 − 27nm

+12m2 − 126n− 102m− 100)ε4

− 1
136 080(10n4 + 20n3m + 6n2m2 − 4nm3− 5m4

+58n3 + 105n2m + 111nm2 + 50m3

−462n2 − 561nm + 204m2 − 1922n− 1726m− 1412)ε5. (A.1)

The expansions to fifth order inε of the ratios of functions of9 = 1 +ε which occur in (2.10)
are

(n− 1)9n+m−1− (n +m− 2)9n + (m− 1)9

n9n+m−1− (n +m− 1)9n + (m− 1)

= (n− 1)(n +m− 2)

n(n +m− 1)
[1 + S(n,m; ε) + O(ε6)] (A.2)

9n+m−1− (n +m− 1)9 + n +m− 2

n9n+m−1− (n +m− 1)9n +m− 1
= (n +m− 2)

n(m− 1)
[1− (n− 1)S(n,m; ε) + O(ε6)] (A.3)

9n − n9 + n− 1

n9n+m−1− (n +m− 1)9n +m− 1

= (n− 1)

(n +m− 1)(m− 1)
[1− (n +m− 2)S(n,m; ε) + O(ε6)] (A.4)

asε → 0. We see that the three equations, (A.2) to (A.4), can be expressed in terms of the
same expansionS(n,m; ε).

Appendix B. Exact solutions

We list the exact solutions which are used to check the accuracy of the perturbation solution
[2, 3, 5].
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(i) n = 3 andm = 0

ζ = ∓
(
9 +

1

2

)1/2 [
−2(9 − ψ)1/2 +

1

(9 − 1)1/2
ln

(
(9 − 1)1/2 − (9 − ψ)1/2
(9 − 1)1/2 + (9 − ψ)1/2

)]
.

(B.1)

(ii) n = 3 andm = 2

ψ = 9
(

1− A tanh2(Dζ)

1 +B tanh2(Dζ)

)
(B.2)

where

A = (29 + 1)(9 − 1)

39(9 + 1)
B = (9 + 2)(9 − 1)

3(9 + 1)

D =
(
(9 + 1)(9 − 1)

2(392 + 29 + 1)

)1/2

.

(B.3)

(iii) n = 2 andm = 2

ψ = 9

1 + (9 − 1) tanh2(( (9−1)
4(29+1) )

1/2ζ )
. (B.4)

(iv) n = 3
2 andm = 3

2

ψ = 9
(

1− A tanh2(Dζ)

1 +B tanh2(Dζ)

)2

(B.5)

where

A = 91/2 − 1

391/2 + 1
B = (291/2 + 1)(91/2 − 1)

391/2 + 1

D =
(
(91/2 − 1)(391/2 + 1)

8(39 + 291/2 + 1)

)1/2

.

(B.6)
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