lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Perturbation solution for small amplitude solitary waves in two-phase fluid flow of compacting

media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 6309
(http://iopscience.iop.org/0305-4470/32/35/309)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:43

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2 (1999) 6309-6320. Printed in the UK PIl: S0305-4470(99)04156-6

Perturbation solution for small amplitude solitary waves in
two-phase fluid flow of compacting media

M Nakayama ad D P Masont

Centre for Differential Equations, Continuum Mechanics and Applications and Department of
Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, 2050
Wits, Johannesburg, South Africa

E-mail: DPMASON@cam.wits.ac.za
Received 10 May 1999

Abstract. A perturbation solution for small-amplitude solitary waves is derived for the third-
order nonlinear partial differential equation due to Scott and Stevenson which describes the one-
dimensional migration of melt through the Earth’s mantle. The straightforward perturbation
expansion breaks down and a coordinate stretching transformation is performed to render the
perturbation expansion uniformly valid. The lowest-order perturbation solution has the same form
as the single-soliton solution of the Korteweg—de Vries equation. The perturbation solution is
derived to second order in implicit form. It is found to be extremely accurate when compared
with known exact solutions for specific values of the exponerasdm. The zero- and first-order
perturbation solutions are found to be accurate whea m. The properties of small-amplitude
solitary waves are investigated using the perturbation solution.

1. Introduction

The one-dimensional migration of melt upwards through the mantle of the Earth under the
action of gravity can be described by the third-order nonlinear partial differential equation [1]

9, 0 [ (1o 2 (L9))]_
2o (- 2(22))) -

for the voidage, or volume fraction of meilt(z, ). Approximate large amplitude and exact
rarefactive solitary wave solutions of equation (1.1) have been derived by several authors
[1-5]. In a rarefactive solitary wave a small region of locally high voidage ascends through a
background region of lower uniform voidage. In this paper we present a perturbation solution
of equation (1.1) for small-amplitude rarefactive solitary waves.

The derivation of equation (1.1) has been performed by several authors, forbgth
[1,5,6] and form = 0 [2, 3, 7]. Interest in equation (1.1) has continued [8—12] and recently
Harris [13] performed a systematic search for conservation laws associated with the equation.
The constant parametersandm are the exponents in power laws relating the permeability of
the medium K, and the bulk and shear viscosities of the solid mafriandsn, to the voidage:

§o 10
P = (1.2)
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It has been suggested that the values ahdm inthe ranges ZX n < 5and 0< m < 1
are physically relevant to melt migration in the Earth’s mantle [1, 3]. The voigdger) in
(1.1) is normalized by division using the constant background voidaged in the derivation
of (1.1) it is assumed thaty <« 1. The dimensionless variablg, is the vertical coordinate
measured ‘positive upwards’ and scaled by division using the compaction l&ngth

5 — <K0¢S_m($0 + %no))l/z

(1.3)
"

whereu is the coefficient of shear viscosity of the melt. The dimensionless variabléhe

time scaled by division using the characteristic tige

no+ i\ 1

0 27/0

o= n+r:r;172 A (14)
Kooy 1AV

whereg is the acceleration due to gravity ang = p; — p,, > 0 is the difference between
the density of the solid matrix,, and the density of the melp,),.

An outline of the paper is as follows. In section 2, general results required in the remainder
of the paper are presented. In section 3, the perturbation solution for small-amplitude solitary
waves is derived to second order in the perturbation parametgreres is the amplitude of the
solitary wave. A stretching transformation is employed to render the perturbation expansion
uniformly valid. In section 4, the accuracy of the perturbation solution for the speed of the
solitary wave is examined and the properties of the speed of small-amplitude solitary waves are
investigated. In section 5 the accuracy of the perturbation solution for the shape of the solitary
wave is examined by comparing it with known exact solutions for specific valuesnfim
and the properties of small-amplitude solitary waves are investigated using the perturbation
solution. Finally, the conclusions are summarized in section 6.

2. General results

In this section we review some general results which are required in section 3 [1, 3, 5].
We consider one-dimensional solitary wave solutions of (1.1) of the form

¢z, 1) =¥ (&) {=z—ct (2.1)
where the constantis the dimensionless ascent speed of the solitary wave. Equation (1.1)
becomes
a ol (a (oar)]
c— —— |y |L1l+c— [ —— =0. 2.2
T ac \ 7 22)
If we integrate (2.2) once with respectg@nd then once with respectfowith the aid of the
identity [1]
d /1 dy 1 d {1 [dy)?
=)=y — | —=— (== 2.3
i (e ) =2 dv(W(dc)) 23)
we obtain
dy \?
) = 24
(q) =rw .4
where

¥ ¥ 2
F() = 242" (oz/ df +c/ ‘jxfl _/ ax +,3> (2.5)
x"l m xl‘l m xm
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anda andg are constants. The background stat¢/is= 1. Let the maximum value of the
voidage bey = ¥ > 1 sothat the amplitude of the solitary wavelis-1. The three constants,

a, B andc in (2.5) are obtained by imposing the following three boundary conditions for a
rarefactive solitary wave:

d d?
=1 %:0 %:o (2.6)
Yy=w>1 z—'?zo. (2.7)

By using (2.3) withmm = 0 and (2.4), the three boundary conditions given by (2.6) and (2.7)
can be written in terms of () as

df
dyr
It can be shown [5] that if the three boundary conditions in (2.8) are imposed on (2.5) then
(%—‘?)2 <0forl <y < Wwwhen0< n < 1andthatt = 0 and % is undetermined
whenn = 0. Therefore, rarefactive solitary wave solutions satisfying (2.8) do not exist when
0 < n < 1. It can be further shown thatif > 1 then(‘é—"’)2 > 0forl< ¢ < W and hence
rarefactive solitary wave solutions exist. In the following we therefore only consider the range
n>1.

There are four cases: a general case and three special cases. For the general case in which
n+m#1,n+m# 2andm # 1, it can be verified that [5]

_(n +m — 2" — (n+m — DV +m — 1]
m—D[Yrm=t —(n+m—-DY+n+m — 2]

f()=0 1 =0 f(U) =0 ¥>1 (2.8)

(2.9)

dy 2 2
<E> - n+m—2)[nvrm=1— (n+m— V" +m — 1]
[+ ((n — DU~ (n+m — 2)U" + (m — HW)y" "+
—W" T (mtm — DY+ m — Dy 2
+(\11n+m—l —(mtm =DV +n+m— 2)¢m+1 — (V" —n¥+n— 1)1ﬁ2m]~
(2.10)

The three special cases are m = 1,n +m = 2 andm = 1. The perturbation solution
which we derive for the general case remains valid whenwe put = 1,n+m = 20orm = 1
and it can be verified by direct calculation that the perturbation solutions for the three special
cases are exactly the same as are obtained by putting = 1,n +m = 2 orm = 1 in the
perturbation solution for the general case. The singular fagters —1,n+m —2 andm — 1
which occur at intermediate stages in the analysis in the general case cancel before the end of
the calculation and do not occur in the final perturbation solution. Logarithms which occur at
intermediate stages in the analysis of the special cases do not occur in the final perturbation
solutions for the special cases. Therefore, we do not consider the special cases here. The
analysis is the same as the general case and the perturbation solution for the general case is
valid for all values of: andm.

3. Perturbation solution

We consider small-amplitude solitary waves. ketenote the amplitude of the solitary wave
so that = 1 +¢ where O< ¢ < 1. We takes to be the perturbation parameter.
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The expansion of (2.9) in powers oto third order ins is
c=n[l+ %(n —De+ 3l6(n —1)(2n — m — 6)?

+o(n — 1)(2n — 8nm — m? — 24n + 21 + 54)6% + O(eY)] (3.1)

ase — 0. The factorgn + m — 2) and(m — 1) which occur in (2.9) do not occur in (3.1).
Next consider the perturbation solution for the solitary wavéMany of the exact solutions
which have been derived are expressed in the implicit fgre, ¢ (v), [2, 3, 5]. We therefore
look for a perturbation solution in implicit form and treatas the independent variable and
as the dependent variable. Now, a straightforward perturbation expansion of the form

1
(Wi e) = 2 (Go() +eta(y) + 25a() + O(e?)) (3.2)

ase — 0, wherey is kept fixed in the limiting process and the exponerg to be determined
during the analysis, breaks down. The reason why (3.2) breaks down is due to the factor
(W — ¢) in f () which occurs because of the boundary conditfgd’ ) = 0 given by (2.8).
Then‘é—"; has the factotw — )12 which may be written aél — v + £)'/2. The lowest-order

term in the straightforward perturbation expansior%/{éfwhich is obtained by putting = 0,

therefore has the fact@f — v)%? which is imaginary becausg¢ > 1. The non-existence

of a straightforward perturbation solution of the form (3.2) is due to the sharp change in the
dependent variable, from either; = +oo or —oo to ¢ = 0 in the domain I ¢ < 1 +¢ of

the independent variablg. The sharp-change regionijs— 1 = O(g). A sharp change is
characterized by a magnified scale. We therfore magnify the sharp change by the stretching
transformation

(3.3)

u =
&

The domain of the variable is 0 < u < 1. We look for a perturbation solution of the form

1
§(us 8) = — (Go(w) + &1 (u) + e2zo(u) + O(e?)) (3.4)

ase — 0, whereu is kept fixed in the limiting process and the exponeid to be determined
during the analyis by balancing the dominant terms. The problem is a singular perturbation
problem.

We expand (2.10) to third order inby substituting = 1 +ecu andW¥ = 1 +¢. This gives

du |2 _e(n— Du(1— u)
(&) - 3

[1—1%{3(2n—5m+2)u+2n+m+2}

2
+1’3—89{9(3n2 — 120m + 16m2 + 9 — 26m + 6>
+3(4n? — 1lnm — Tm? + 121 — 8m + 8)u
+2n% + 2nm — m® + 160 + 11m + 14} + 0(53)] (3.5)

ase — 0. Intermediate results in the derivation of (3.5) are given in appendix A. We observe
thatn — 1 is a factor on the right-hand side of equation (3.5). This clearly illustrates the
general result that for solitary wave solutions to exist which satisfy the boundary conditions
(2.6) and (2.7), or equivalently (2.8), it is necessary that 1. We also see that the factors
n+m—1,n+m — 2 andm — 1 which occur at intermediate stages in the analysis do not occur
in expansion (3.5).
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It follows directly from (3.5) and expansion (3.4) fotu; ¢) that

Sia(dé“o +edgy +e%dg + O(e?)

1 3 \Y2 1 A(n, m) B(n, m)
= :t _— +8 +
gl/2 <n—1> |:u(1—u)1/2 <2(1—u)1/2 u(l—u)1/2>

E(}’l, m) F(}’l, m)
2(1 — u)¥/2 * u(l— u)1/2> + 0(83)} du  (3.6)

+£2(2D(n, m)(1— u)? +

where
A(n,m) = 3(2n — 5m +2) (3.7)
B(n,m)= 5(2n+m+2) (3.8)
D(n,m) = ge5(—12n + 1081m — 119n® + 24n — 116m + 36) (3.9)
E(n,m) = 55(921° — 388um + 319n? — 24n + 236m — 116) (3.10)
F(n,m) = 55(281% + 281m + 31m? — 1361 — 116m — 164). (3.12)

By balancing the dominant terms on the right- and left-hand sides of (3.6) it follows thae}.
Equation (3.6) becomes

1/2
d§'0+8d§1+82d§2+0(83)::1:( 31) |: 1 +£( A, m) + B(n, m) )
n—

u(l—u)l/? 20— w)¥2  u(1—u)l?

3 E(n, m) F(n,m)
+£2(§D(n, m)(L—u)"? + 2(1 — )2 * u(l— M)1/2> * 0(83)} -

(3.12)
We choos& = 0 atu = 1 which corresponds t¢ = W. Thus
u=1 &L =0 n>0. (3.13)

Equation (3.12) is solved, subject to the initial conditions (3.13), by equating the coefficients
of like powers ofs.

3.1. Zero order ire

The zero order i terms in (3.12) are
3 \? du
dgo ==+ .
0 (n - 1) u(1— u)l/2
We obtain the zero-order solution in both explicit and implicit form.

First, consider the solution in explicit form. If we let= secl ¢ and from (3.13) impose
the initial conditionzg = 0 até = 0, then we obtain

1/2
u = sech (% (” 3 1) ;0> . (3.15)

Sincey = 1 +¢u and, to lowest order i, 7o = £2¢, wheree = W — 1, equation (3.15)

becomes
_ _ 1/2
¥ =1+(V —1)sechk [% (w) g} ) (3.16)

(3.14)

3

The approximate solution (3.16) has the same S&mim as the single-soliton solution of the
Korteweg—de Vries equation [14].
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Next consider the solution in implicit form. By letting= 1 — w? it can be verified that

du 1+(1— w2
wa—we = MiTazer)? 17
f u(l—u)lz n (1 T Az constant (3.17)
Thus using (3.17) and the initial conditiogy, = 0 atu = 1, it follows from (3.14) that
3 \Y2 [ 1+@+uw)l?
ol =7 (n - 1) In (m) : (3.18)

Since¢y = ¢¥2¢ andy = 1 +eu, wheree = W — 1, we obtain from (3.18) the implicit
solution to lowest order ia:

3 1/2 (\IJ _ 1)1/2 + (w _ 1)]_/2
‘=T (W) n ((\IJ — D2 (y — 1)1/2) : (3.19)

3.2. First order ine

By equating the coefficients efin (3.12) we obtain
3 \Y2T A, m) B(n, m)
dgp ==+ y y du. 3.20
f1 <n—1> [2(1—14)1/2 " u(l—u)1/2:| . (3.20)
We integrate (3.20) with the aid of (3.17) and impose the initial condition (3.13);that0
atu = 1. This gives

3\ 1+(1—uw?

3.3. Second order in

By equating the coefficients ef in (3.12) we have
3 \Y?13 E(n, m) F(n,m)
dep =+ — =D 1—u)?+ ’ + i d
&2 <n - 1) [2 (e m) @ =) S 2 = u)1/2i|
In order to integrate (3.22), equation (3.17) is used again. By imposing the initial condition
from (3.13) that;, = 0 atu = 1, we obtain

3 \!2
So(u) = F (m)

1+(1—uw)?
<D0 =0 £ m A= Fmn (0 )|

(3.23)

(3.22)

3.4. Solution correct to order?

The perturbation solution correct to second orderigobtained by substituting (3.18), (3.21)
and (3.23) into expansion (3.4) with= %:

B 3 1/2 | 1+(1—M)l/2
g_]F((n—l)e) [”(1—(1—u)1/2>

1+ —u)l/?
+5<A<n, m)(L— )"+ Bn,m)In <m))

+82(D(I’l, m)(1l— u)3/2 +Em,m)(1— u)l/2

1+(1—u)? 3
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c {a) n=3, £=08

Figure 1. Comparison of the perturbation solution (3.1) and the exact solution (2.9)vadth
e=08and@n=3,0<m<3b)m= % 1 < n < 5. Perturbation solution to first order
(- - - -), second order (- —-), third order (— — —) and exact solution (—).

ase — 0, where
Y =1+eu. (3.25)

We can substitute = %(W — 1) into (3.24) to obtain an implicit solution of the form
¢ = ¢(¥). Alternatively, we can leave the solution in the parametric form, (3.24) and (3.25),
with u as a parameter, whereQu < 1. The parametric form is particularly useful for plotting
graphs of the solitary wave.

The perturbation solution for the special cagesm = 1,n+m = 2 andm = 1 can
be calculated, as outlined above, for the general case. It can be verified that the perturbation
solutions derived for the special cases are exactly the same as are obtained bypsittingn,
m = 2—n andm = 1inthe general solution (3.24). The special case: = 1 is not physical
if m > 0 because them < 1.

The perturbation solution, (3.24) and (3.25), is discussed in section 5.

4. Perturbation solution for the speed of the solitary wave

The accuracy of the perturbation solution f@sm varies for fixed: is examined in figure H)
where the perturbation solution (3.1) and the exact solution (2.9) fer3 and 0< m < 3
are compared when= 0.8. The perturbation solution becomes less accurate iasreases
and the perturbation solution to(€%) is slightly more accurate than the perturbation solution
to O(e%). The accuracy of the perturbation solution #asn varies for fixedn is investigated
in figure 1p) where the perturbation and exact solutions, (3.1) and (2.9), are compared for
m = % and 1< n < 5whene = 0.8. The perturbation solution becomes less accurate as
increases but the perturbation solution t@®) is more accurate than the perturbation solution
to O(e?). As more terms are included in the perturbation solution it alternately underestimates
and overestimates the exact solution.

The dependence afon n has been fully investigated using the exact theory [5] and it
can be shown thatis an increasing function of for n > 1, as illustrated in figure bj. The
dependence af onm can be investigated using the perturbation solution (3.1). From (3.1),

5—; = —S—iOn(n — D[15 +(8n + 2m — 21)e]e? + O(e%) (4.1)

ase — 0. Suppose that > 0, which is physically relevant to melt migration in the Earth’s
mantle and that & ¢ < 1 which is necessary for the perturbation solution to apply. Also, for
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() n=3 m=2

(yn=2 m=2 (d) n=

Figure 2. Comparison of the perturbation solution, (3.24) and (3.25)¢ fer 0.8 with the exact
solutions: ) n =3, m=0;b)n =3, m=2;,C)n=m=2;d)n=m= g Perturbation
solution to zero order (— — —), first order (— — —), second order<-) and act solution (—).
The graphs of the second-order perturbation solution and the exact solutions overlap.

the existence of a solution, it is necessary that 1. Then, if terms of @*) are neglected,

ac 1
— < ——nmn—1Dm+1e <0. 4.2
. < 27on(n Yim +1e® <0 (4.2)
Thus, for small-amplitude solitary waves correct te:®), ¢ is a decreasing function of the
exponentn for m > 0, as illustrated in figure &j.
The speed;, is dimensionless and is scaled with respect to the velocity of the background
melt which from (1.3) and (1.4) is given by

éc KogAp\ ,,_
ge _ (_0 >¢O L 4.3)
fo 2
The actual speea, of the solitary wave is
KogA
V= (M) ¢8—1C (4.4)
"

which has a different dependencermfrom ¢ but the same dependencemnThus for small-
amplitude solitary waves correct to(€9), v is a decreasing function of the exponentor
m > 0.
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5. Perturbation solution for the solitary wave

The exact solutions for = 3andm =0,n =3 andm =2,n =m =2andn =m = g are
listed in appendix B. In figure 2 the perturbation solution in parametric form, given by (3.24)
and (3.25), is compared with the exact solutions when0.8. For all cases the graph of the
perturbation solution to second ordersimverlaps the exact solution which indicates that the
perturbation solution to second ordetirs a good approximation for small-amplitude solitary
waves. We also see that when= » the perturbation solution is particularly accurate and
even the zero-order solution (3.16) is close to the exact solution.

Inorderto use the perturbation solution to investigate how the properties of small amplitude
solitary waves depend anandm, we must express the solution in terms of characteristic
gquantities that are independentodndm. Thus, instead of scaling by §. defined by (1.3),
we use the characteristic lengthdefined by

Kotgo+ $m0)\ "
5;:(%3"0) . (5.1)

The perturbation solution depends explicitly on the background voidggéered, « 1.
First, consider the lowest-order perturbation solution given by (3.16). Wherscaled
by &/, (3.16) may be written as

¥ =1+ — 1)sechk (Z_L“> (5.2)
whereL, which is a measure of the width of the solitary wave to this approximation, is
n—m 1/2
L=2 <L> . (5.3)
(n—=1)(¥ -1

Equation (5.2) has the same form as the single-soliton solution of the Korteweg—de Vries
equation [14]. The widthL, is inversely proportional to the square root of the amplitude as
with the solution of the Korteweg—de Vries equation. Larger-amplitude solitary waves are
therefore narrower in width. This compares with the result for large-amplitude solitary waves
for which it can be shown, using the large-amplitude approximation, that larger-amplitude
solitary waves are narrower in width4f > 1 but broader in width if 0< m < 1 [5]. It
follows directly from (5.3) that

oL 1 1

%=§<In¢o——n_l>L<0 (5.4)
JaL 1

o = —E(In $o)L > 0. (5.5)

Thus, to the lowest-order approximatioh,decreases as increases and. increases as:
increases. If terms to first order éinare retained then from (3.1),

c=nl+imn - W -1)). (5.6)

The speed increases linearly with the amplitud®, — 1, as for the single-soliton solution
of the Korteweg—de Vries equation [14]. Thus, in the small-amplitude approximation, larger-
amplitude solitary waves travel faster. The fact that larger-amplitude solitary waves travel
faster may be proved without approximation for waves of any amplitude [5].

Now consider the contributions of higher-order terms in the perturbation solution. Let
W denote the width of the solitary wave at half its height. Th#ris twice the value of
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6.73

4.48

2.241

0.00+

Figure 3. The width, W, of the solitary wave at half its height, given by (5.7), plotted against
andm for ¢g = 0.01 ande = 0.8. The characteristic length 8 defined by (5.1).

evaluated att = % If we scale; by &/ instead of bys. then from (3.24),

n—m 1/2 2+1 1 2+1
W = 2(*) [In <‘/_—> +e(— A(n.m) + B(n.m)In (“/_—>>
(n—1e V2-1 V2 V2-1
1 1 V2+1
+¢?( — D, m)+ —E®, m) + F(n,m)In +Os3] 57
(s2500m+ Lt rmin (25} 0]
ase — 0. Infigure 3,W is plotted against andm for ¢g = 0.01 ande = 0.8. We see from
figure 3 that whemo = 0.01, W is an increasing function e and a decreasing function of
which is consistent with the conclusions drawn from the lowest-order perturbation solution. A
similar dependence of the width erandm whengo = 0.01 was found for the large-amplitude
approximation [5].

6. Conclusions

The exact solutions of equation (1.1) which have been derived so far apply for specific values
of n andm. The perturbation solution, (3.24) and (3.25), applies for all valuegiof> 1)

andm. It can therefore be used to investigate how the properties of small-amplitude solitary
waves depend om andm. Equation (3.24) clearly shows that> 1 is a necessary condition

for the existence of solitary wave solutions satisfying the boundary conditions (2.6) and (2.7)
[5]. The parametric form, (3.24) and (3.25), also provides a convenient way to calculate the
width and to plot graphs of the solitary wave.

The comparison of the perturbation solution with the exact solutions showed that the
perturbation solution to order is a very good approximate small-amplitude solitary wave
solution. In all cases considered the graphs of the perturbation solution to second arder in
and the exact solutions overlapped. The accuracy of the perturbation solutions to zero order
and first order ire improved asn andrn became equal and were quite accurate for the two
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cases ofn = n considered. The values afandm in the exact solutions used to test the

perturbation solution were in the rang%% n < 3and 0< m < 2. The valueg = 0.8,

which was used is comparatively large for a perturbation parameter and provided a good test.
The lowest-order perturbation solution has the same?stecm and similar properties

to the single-soliton solution of the Korteweg—de Vries equation. To this approximation the

width of the solitary wave is inversely proportional to the square root of the amplitude and the

speed of the solitary wave increases linearly with the amplitude.
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Appendix A. Expansions in powers ofe

Consider the general case in whiekt m # 1,n +m # 2 andm # 1. We present some
perturbation expansions to fifth orderdrnused in the derivation of equation (3.5). Define
S(n,m; ¢e) = %e — siG(Zn +m+2)e? + 5—}10(2112 +2nm — m? + 160 + 11m + 14)¢3

+ 2 (2n® + 3n®m + 3nm® + m® — 24n® — 2Tnm

+12m? — 1261 — 102n — 100)&*

— Taesae10n* + 20n°m + 6n°m? — 4nm® — 5m*
+581% + 1052%m + 111nm? + 50m°
—462n° — 561nm + 204m? — 1922 — 1726m — 14129¢°. (A1)

The expansions to fifth order inof the ratios of functions o = 1 +¢ which occur in (2.10)
are

n—DW"™ 1 (n+m—2)W" + (m — W
nwrtm=l _ (m+m — DHW" + (m — 1)
_ mn—=—1Dn+m-—-2)
T an+tm =1
wtm=l (gt — D)W +n+m — 2 _(n+m—2)
U=l (mam — DY +m —1  nm—1)

[1+S(n, m;e) + O] (A.2)

[1—(n—1)Skn, m;e)+0(®] (A.3)

v —pW+n—1

nmm=l — (n+m — W +m —1
(n—-1

T Fm—1Dm -1

[l—(n+m—2)S(n,m;e) + 0(86)] (A.4)

ase — 0. We see that the three equations, (A.2) to (A.4), can be expressed in terms of the
same expansiofi(n, m; ¢).
Appendix B. Exact solutions

We list the exact solutions which are used to check the accuracy of the perturbation solution
[2,3,5].
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() n=3andm =0
1\M? 12 1 (¥ -2 — (¥ — )"
c=x(veg) [aw -0 e (Gt e )|
(B.1)

(i) n=3andm =2

B 1— Atant¥(D¢)
="y (1 + Btantt(D¢) (8.2)

where
A_(2\11+1)(q/—1) B_(xp+2)(w—1)
T 3w(U+l) T 3w+ B3
b (D -1 vz B3
o (2(3np2+2xp+1)) ’
(i) n =2andm =2
¥ = hd (B.4)
1+ (¥ — 1) tankf(( 4((‘2"53))1/2@
(iv) n =32 andm = 3
;o 1— Atant(D¢) 2 (B.5)
B 1+ Btanlf(D¢) '
where
A w2z _1 QU2+ (w2 —1)
T 3wl2+1 N 3wl2+1
(Lpl/Z _ 1)(34,1/2 + 1) 1/2 (B6)
- < 8(3W + 2W1/2 + 1) ) ‘
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